过程及目的
建造过程和探索微观粒子的目的
大型强子对撞器,英文名称为LHC(Large Hadron Collider)是一座位于瑞士日内瓦近郊欧洲核子研究组织CERN的粒子加速器与对撞机,作为国际高能物理学研究之用。地理坐标为北纬46°14′00″,东经6°03′00″46.23;6.05, LHC已经建造完成。
大型强子对撞机将是世界上最大、能量最高的粒子加速器,来自大约80个国家的7000名科学家和工程师。由40个国家建造。是一种将质子加速对撞的高能物理设备。它是一个圆形加速器,深埋于地下100米,它的环状隧道有 27 公里长,坐落于在瑞士日内瓦的欧洲核子研究中心(又名欧洲粒子物理实验室),横跨法国和瑞士的边境。
为了节省成本,物理学家们没有开凿一条昂贵的新隧道来容纳新的对撞机,而是决定拆掉原来安置在欧洲原子核研究中心的正负电子加速器,代之以建造大型强子对撞机所需要的5万吨设备。当两个质子束在环形隧道中沿着反方向运动的时候,强大的电场使它们的能量急剧增加。这些粒子每运行一圈,就会获得更多的能量。要保持如此高能量的质子束继续运行需要非常强大的磁场。这么强的磁场是由冷却到接近绝对零度的超导电磁体产生的。物理学家们最希望建造的是一个30公里长的机器,它能以至少5千亿电子伏的能量将电子和正电子一起粉碎。 目前;对撞机已经发现了‘希格斯粒子希格斯玻色子的存在,升级后发现‘夸克奇异重子’五种夸克的‘味变’集合体存在,改造升级能量的加大还会‘探索发现’超对称粒子和希格斯耦合粒子与粒子的额外维相存在。
设备结构
LHC是一个国际合作的计划,由34个国家超过两千位物理学家所属的大学与实验室所共同出资合作兴建的。
LHC包含了一个圆周为27公里的圆形隧道,因当地地形的缘故位于地下50至150米之间。这是先前大型电子正子加速器(LEP)所使用隧道的再利用,隧道本身直径三米,位于同一平面上,并贯穿瑞士与法国边境,主要的部分大半位于法国。虽然隧道本身位于地底下,尚有许多地面设施如冷却压缩机,通风设备,控制电机设备,还有冷冻槽等等建构于其上。
加速器通道中,主要是放置两个质子束管。加速管由超导磁铁所包覆,以液态氦来冷却。管中的质子是以相反的方向,环绕着整个环型加速器运行。除此之外,在四个实验碰撞点附近,另有安装其他的偏向磁铁及聚焦磁铁。
LHC加速环的四个碰撞点,分别设有五个侦测器在碰撞点的地穴中。其中超环面仪器 (ATLAS)与紧凑渺子线圈(CMS)是通用型的粒子侦测器。其他三个(LHC底夸克侦测器(LHCb),大型离子对撞器(ALICE)以及全截面弹性散射侦测器(TOTEM)则是较小型的特殊目标侦测器。
研究历史
1994年,大型强子对撞机项目立项后,林恩·埃文斯理所当然地就成为了这个耗资百亿美元的项目的负责人。对撞机从设计到建造,都由他全权负责。14年后,在瑞士和法国交界地区地下100米深处的周长为27公里的环形隧道里,埃文斯和全球80多个国家近万名科学家的心血结晶——大型强子对撞机正式建成。
在2005年10月25日,因为起重机载货的意外掉落,造成一位技术人员的丧生。
2007年3月27日,由费米实验室所负责建造,一个用于 LHC 内部的三极低温超导磁铁(属于聚焦用四极磁铁),因为支撑架的设计不良,在压力测试时发生破损。虽然没有造成人员的伤亡,但是却严重影响了 LHC 开始运作的时程。
2008年6月15日,在埃文斯的退休仪式上,这6位主任纷纷亲自出面或通过视频向他致以敬意。他们还联合签署了一份文件,将大型强子对撞机以林恩·埃文斯的名字命名,并制作了一个对撞机偶极子的小模型赠送给埃文斯。
2008年9月10日,对撞机初次启动进行测试。埃文斯将手指放在鼠标上,亲自点击启动了首次测试。这次测试是研究人员将一个质子束以顺时针方向注入到加速器中,让其加速到99.9998%光速的超快速度,从而使此质子束在全长27公里的环形隧道中以每秒11245圈的速度狂飙。这一幕通过网络视频向世界进行了直播,还有300多名记者来到此实验室目睹测试过程。
2008年9月19日,LHC,第三与第四段之间,用来冷却超导磁铁的液态氦,发生了严重的泄漏。据推测是由于联接两个超导磁铁的接点接触不良,在超导高电流的情况下融毁所造成的。依据CERN的安全条例,必需将磁铁升回到室温后详细检查才能继续运转,这将需要三到四周的时间。要再冷却回运作温度,也是得经过三四周的时间,如此正好遇上预定的年度检修时程,因此要开始运作将可能延迟至2009年春天。
2008年10月16日,CERN发布了关于液态氦泄漏事件的调查分析,证实了先前推测的为两超导磁铁间接点不良所造成的。由于安全条例确实地实行、安全设计皆有正常工作、并且替换用的零件都有库存,预期2009年6月重启。
运行状况
2008年9月10日下午15:30正式开始运作,成为世界上最大的粒子加速器设施。
2008年9月19日,LHC第三与第四段之间,用来冷却超导磁铁的液态氦,发生了严重的泄漏,导致对撞机暂停运转。
自大约80个国家的7000名科学家和工程师参与了该项目。
60余名中国科学家(其中近四十人为台湾科学家)参与强子对撞机实验。四个主要实验均有中国科研单位和高校参与,分别为:中科院高能物理研究所、中国科技大学、山东大学、南京大学参与ATLAS实验;中科院高能物理研究所、北京大学参与CMS实验;华中师范大学参与ALICE实验;清华大学参与LHCb实验。
技术原理
大型强子对撞机(LHC)是欧洲粒子物理研究所(CERN)的加速器复合体的最新补充。
在这个加速器里面,2束高能粒子流在彼此相撞之前,以接近光速的速度向前传播。这两束粒子流分别通过不同光束管,向相反方向传播,这两根管子都处于超高真空状态。一个强磁场促使它们围绕那个加速环运行,这个强磁场是利用超导电磁石获得的。这些超导电磁石是利用特殊电缆线制成的,它们在超导状态下进行操作,有效传导电流,没有电阻消耗或能量损失。要达到这种结果,大约需要将磁体冷却到零下271℃,这个温度比外太空的温度还低。由于这个原因,大部分加速器都与一个液态氦分流系统和其他设备相连,这个液态氦分流系统是用来冷却磁体的。
大型强子对撞机利用数千个种类不同,型号各异的磁体,给该加速器周围的粒子束指引方向。这些磁体中包括15米长的1232双极磁体和392四极磁体,1232双极磁体被用来弯曲粒子束,392四极磁体每个都有5到7米长,它们被用来集中粒子流。在碰撞之前,大型强子对撞机利用另一种类型的磁体“挤压”粒子,让它们彼此靠的更近,以增加它们成功相撞的机会。这些粒子非常小,让它们相撞,就如同让从相距10公里的两地发射出来的两根针相撞一样。
这个加速器、它的仪器和技术方面的基础设施的操作器,都安装在欧洲粒子物理研究所控制中心的同一座建筑内。在这里,大型强子对撞机内的粒子流将在加速器环周围的4个区域相撞,这4个区域与粒子探测器的位置相对应。
工作流程
两个对撞加速管中的质子,各具有的能量为 7 TeV (兆兆电子伏特),总撞击能量达 14 TeV之谱。每个质子环绕整个储存环的时间为 89 微秒(microsecond)。因为同步加速器的特性,加速管中的粒子是以粒子团(bunch)的形式,而非连续的粒子流。整个储存环将会有2800个粒子团,最短碰撞周期为 25 纳秒(nanosecond)。在加速器开始运作的初期,将会以轨道中放入较少的粒子团的方式运作,碰撞周期为 75 纳秒,再逐步提升到设计目标。
在粒子入射到主加速环之前,会先经过一系列加速设施,逐级提升能量。其中,由两个直线加速器所构成的质子同步加速器 (PS)将产生50 MeV的能量,接着质子同步推进器 (PSB)提升能量到1.4GeV。而质子同步加速环可达到26 GeV的能量。低能量入射环(LEIR)为一离子储存与冷却的装置。反物质减速器 (AD)可以将3.57 GeV的反质子,减速到2 GeV。最后超级质子同步加速器(SPS)可提升质子的能量到450 GeV。
LHC也可以用来加速对撞重离子,例如铅(Pb)离子可加速到1150 TeV。由于LHC有着对工程技术上极端的挑战,安全上的确保是极其重要的。当LHC开始运作时,磁铁中的总能量高达100亿焦耳(GJ),而粒子束中的总能量也高达725百万焦耳(MJ)。只需要10?7总粒子能量便可以使超导磁铁脱离超导态,而丢弃全部的加速粒子可相当于一个小型的爆炸。
创始人物
林恩·埃文斯(Lyn Evans),欧洲大型强子对撞机的领导者。是威尔士一位矿工的儿子,在阿布戴尔(Aberdare)中学时就对科学萌发了兴趣,获得了英国斯旺西大学的物理学博士学位。
1969年,他花3个月时间访问了欧洲核子物理研究组织(CERN)项目。从此,他和妻子以及家人就定居在这里。65岁的威尔士人林恩·埃文斯大概可以算得上是这个世界上对“爆炸”最执着的人了。从小就爱用各种化学物质捣鼓点小爆炸的他,长大后又对宇宙大爆炸产生了兴趣。
为了模拟宇宙大爆炸,解开宇宙之谜,他一手“策划”了堪称世界上最大科学实验的欧洲大型强子对撞机(LHC)项目。从设计,建造,到实验,埃文斯已经一路伴随这个项目走过了近16个年头。5个月前正式从欧洲核子研究中心(CERN)退休后,埃文斯渐渐放慢了工作节奏,但他依然没有离开LHC项目。尽管不再担任项目负责人,他在CMS(紧凑缪子线圈)实验小组中仍然担任着重要工作。
研究课题
欧洲核子研究中心于2008年9月10日启动大型强子对撞机(LHC)。这个世界上最大的机器,有望揭开宇宙起源的奥秘在内五大谜团。
过去几十年来,物理学家不断在细节上加深对构成宇宙的基本粒子及其交互作用的了解。了解的加深让粒子物理学的“标准模型”变得更为丰满,但这个模型中仍存在缝隙,以至于我们无法绘制一幅完整的图画。为了帮助科学家揭示粒子物理学上这些关键性的未解之谜,需要大量实验数据支持,大型强子对撞机便担负起“数据提供者”的角色,这也是非常重要的一个步骤。大型强子对撞机能够将两束质子加速到空前的能量状态而后发生相撞,此时的撞击可能带来意想不到的结果,绝对是任何人都无法想象的。
牛顿未完成的工作——什么是质量?
质量的起源是什么?为什么微小粒子拥有质量,而其它一些粒子却没有这种“待遇”?对于这些问题,科学家到现在也没有找到一个确切答案。最有可能的解释似乎可以在希格斯玻色子身上找到。希格斯玻色子是“标准模型”这一粒子物理学理论中最后一种尚未被发现的粒子,它的存在是整个“标准模型”的基石。早在1964年,苏格兰物理学家彼得·希格斯(Peter Higgs)便首次预言存在这种粒子,科学家多次通过这台机器观测到这种粒子。
ATLAS和CMS实验将积极寻找这种难于捉摸的粒子存在迹象。
一个“看不见”的问题——96%的宇宙由什么构成?
我们在宇宙中看到的一切——从小蚂蚁到巨大的星系——都是由普通粒子构成的。这些粒子被统称为物质,它们构成了4%的宇宙。余下的部分据信由暗物质——不发光的物质和暗能量构成,它们对于整个宇宙的构成与运行有着极其重要的作用。对它们进行探测和研究的难度不可想象。研究暗物质和暗能量的性质是当今粒子物理学和宇宙学面临的最大挑战之一。
ATLAS和CMS实验将寻找超级对称的粒子,用于验证一种与暗物质构成有关的假设。
大自然的偏好——为什么找不到反物质?
我们生活在一个由物质构成的世界,宇宙万物——包括我们人类在内都是由物质构成的。反物质就像物质的一个孪生兄弟,但它却携带相反电荷。在宇宙诞生时,“大爆炸”产生了相同数量的物质和反物质。然而,一旦这对孪生兄弟碰面,它们就会“同归于尽”,并最终转换成能量。不知何故,少量物质幸存下来,并形成我们现在生活的宇宙,而它的孪生兄弟反物质却几乎消失得无影无踪。为什么大自然不能一碗水端平,平等对待这对孪生兄弟呢?
LHCb实验将寻找物质与反物质之间的差异,帮助解释大自然为何如此偏向。此前的实验已经观察到两者之间的些许不同,但迄今为止的研究发现还不足以解释宇宙中的物质和暗物质为何在数量上呈现出明显的不均衡。
“大爆炸”的秘密——物质在宇宙诞生后的第一秒呈什么状态?
构成宇宙万物的物质据信来源于一系列密集而炽热的基本粒子。现在宇宙中的普通物质由原子构成,原子拥有一个由质子和中子构成的核子,质子和中子都是被称之为“胶子”的其它粒子束缚夸克形成的。这种束缚非常强大,但在最初的宇宙,由于温度极高加之能量巨大,胶子很难将夸克结合在一起。也就是说,这种束缚似乎是在“大爆炸”发生后的最初几微秒内形成的,此时的宇宙拥有一个由夸克和胶子构成的非常炽热而密集的混合物,也就是所说的“夸克-胶子等离子体”。
ALICE实验将利用大型强子对撞机模拟大爆炸发生后的原始宇宙形态,分析夸克-胶子等离子体的性质。
隐藏的世界——空间的额外维度真的存在吗?
根据爱因斯坦广义相对论,人类生存的三维空间加上时间轴即构成所谓四维时空。后来的理论认为,可能存在拥有隐藏维度的空间。弦理论便暗示额外的空间维度尚未被人类观察到,它们似乎会在高能条件下显现出来。基于这种推测,科学家将对所有探测器获得的数据进行仔细分析,以寻找额外维度存在迹象。
物理学家希望借由加速器对撞机来帮助他们解答下列的问题:
标准模型中所流行的造成基本粒子质量的希格斯机制是真实的吗?
真是如此的话,希格斯粒子有多少种,质量又分别是多少呢?
当重子的质量被更精确的测量时,标准模型是否仍然成立的?
粒子是否有相对应的超对称(SUSY)粒子存在?
为何物质与反物质是不对称的?
有更高维度的空间(Kaluza-Kleintheory,extradimensions)存在吗?
我们可以见到这启发弦论的现象吗?
宇宙有96%的质量是天文学上无法观测到的,这些到底是什么?
为何万有引力比起其他三个基本作用力(电磁力,强作用力,弱作用力)差了这么多个数量级?
重离子对撞机
虽然LHC的物理实验计划,着重于研究质子对撞后的现象。然而,短期的如每年一个月的重离子对撞也在实验计划之中。虽然其他较轻的离子对撞实验也是可行的,主要的规划为铅离子的对撞实验。
获得荣誉
世界上最大的机器
大型强子对撞机的精确周长是2.6659万米,内部总共有9300个磁体。大型强子对撞机不仅是世界上最大的粒子加速器,而且仅它的制冷分配系统(cryogenic distribution system)的八分之一,就称得上是世界上最大的制冷机。制冷分配系统在充满近60吨液态氦,将所有磁体都冷却到零下271.3℃(1.9开氏度)前,它将先利用1.008万吨液态氮将这些磁体的温度降低到零下193.2℃。
世界上最快的跑道
功率达到最大时,数万亿个质子将在大型强子对撞机周围的加速器环内以每秒1.1245万次的频率急速穿行,它们的速度是光速的99.9999991%。两束质子束分别以70000亿电子伏特的最大功率相向而行,在功率达到140000亿电子伏特时发生碰撞。每秒总共能发生大约6亿次撞击。
太阳系中最空的空间
为了避免加速器中的粒子束与空气分子相撞,这些粒子束在像行星间的空间一样空荡的超真空环境中穿行。大型强子对撞机的内压是10(-13)(10的负13次方)个大气压,比月球上的压力小10倍。
银河系最热点
大型强子对撞机是一个极热和极冷并存的机器。当两束质子束相撞时,它们将在一个极小的空间内产生比太阳中心热10万倍的高温。与之相比,促使超流体氦在加速器环周围循环的制冷分配系统,让大型强子对撞机保持在零下271.3℃(1.9开氏度)的超低温环境下,这个温度比外太空的温度还低。
史上最先进的探测器
为了抽样检查和记录每秒多达6亿次的质子相撞结果,物理学家和工程师已经制造了测量粒子的精确度是微米的庞大仪器。大型强子对撞机的探测器拥有先进的电子触发系统,它测量粒子经过时所用时间的精确度,大约是十亿分之一秒。这个触发系统在确定粒子的位置时,精确度可达百万分之一米。这种令人难以置信的快速和精确反应,是确保一个探测器连续层内记录的粒子保持一致的基础。
世界最强大计算机系统
记录大型强子对撞机进行的每项大试验的数据,每年大约足够刻10亿张双面DVD光盘。据估计,大型强子对撞机的寿命是15年。为了让世界各地的数千名科学家在未来15年内通力合作,分析这些数据,分布在世界各地的好几万台电脑将利用一种被称作网格的分散式计算网(distributed computing network)实施研究工作。
世界各地的数千名科学家都希望了解并分析这些数据。为了解决这个问题,目前欧洲粒子物理研究所(CERN)正在建一个分散的计算和数据储存设施——大型强子对撞机计算网格(LCG)。大型强子对撞机实验产生的数据,将通过欧洲粒子物理研究所记录在磁带进行原始文件备份后,再分发到世界各地。经过初始加工,这种数据将被传送到可为大量数据提供充足储存空间的一系列大型计算机中心,这些计算机中心一天二十四小时不停地为大型强子对撞机计算网格提供服务。
中国台湾也参与其中,负责其中两项重要系统的研发,并处理庞大实验数据。亚洲唯一的电脑中心就设在台湾的中研院。这次台湾约有40名科学家参与这项国际实验,负责世界上最大与最重的侦测器研发,而且处理庞大实验数据所倚赖的「网格电脑」就设在台湾的中研院。
经过这些计算机中心的处理,其他设备就可使用这些数据了,其他的设备每个都有一个或几个实施特殊分析任务的联合计算机中心组成。当个科学家可通过大学部门的局域网或个人电脑了解这些设备,这些人可能会经常查看大型强子对撞机计算网格。
中国研发
2014年7月,中国北京高能物理研究所正在筹备一个两倍于LHC的环形粒子对撞机。
中国将要修建的对撞机周长达到了52公里,对撞能量高达70 TeV。按计划,中国的对撞机将在初期阶段只针对电子,且对撞能量仅有能量240 GeV,而后期则逐渐开足马力进行质子对撞。
预计中国的对撞机将在2028年投入使用,耗资30亿美元,目前尚不清楚这是否是一个与国外同行携手进行的联合项目。
本百科内容由用户你猜我猜不猜整理上传,当前页面所展示的词条介绍涉及宣传内容属于注册用户个人编辑行为,与【世界上能量最高的对撞机】的所属企业/所有人/主体无关,网站不完全保证内容信息的准确性、真实性,也不代表本站立场。内容仅为介绍词条基本情况,想要了解更多请到官方平台。若该内容有影响到您的权益请联系我们,我们将在第一时间处理,runfei999@163.com